| | | | | • | | |------------------------------|--|---------------------------------------|---|------------------------|--| | Public roadia hada (| REPORT D | OCUMENTAT | ION PAGE | | Form Approved
OMB No. 0704-0188 | | | | | | | earching existing data sources, gathering and ther aspect of this collection of information, | | | | | | | | | collection of information if | it does not display a currently | | twithstanding any other provision of
ASE DO NOT RETURN YOUR FO | | | | 1. REPORT DATE | (DD-MM-YYYY) | 2. REPORT TYPE | | | B. DATES COVERED (From - To) | | | | Technical Papers | | | DATES GOVERED (FIGHT - 10) | | 4. TITLE AND SUE | BTITLE | | | | a. CONTRACT NUMBER | | | | | | | b. GRANT NUMBER | | | | | | . 1 | START HOMBER | | | | | | 5 | c. PROGRAM ELEMENT NUMBER | | 6. AUTHOR(S) | | | | | | | o. Ao mon(o) | | | | | d. PROJECT NUMBER | | | | | | | 2303 | | | | | | | e. TASK NUMBER | | | | | | | m 208 | | | | | • | 5 | f. WORK UNIT NUMBER | | | | , | | | i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | | 7. PERFORMING C | RGANIZATION NAMI | E(S) AND ADDRESS(ES | · · · · · · · · · · · · · · · · · · · | | DEDECOMING ORGANIZATION | | | | | , | | PERFORMING ORGANIZATION | | Air Force Research | ch Laboratory (AFM | (C) | | " | ier om i | | AFRL/PRS | (* *** | | | | 1 | | 5 Pollux Drive | | | | ļ | | | Edwards AFB CA | 02524 7040 | | | ļ. | | | Edwards AFD CF | 1 93324-7048 | | | | | | | | | | | | | 9. SPONSORING / | MONITORING AGENO | CY NAME(S) AND ADDR | RESS(ES) | 1: | 0. SPONSOR/MONITOR'S | | | | | | | CRONYM(S) | | | | | | | • | | Air Force Research | ch Laboratory (AFM | IC) | | | ! | | AFRL/PRS | | | | 1 | 1. SPONSOR/MONITOR'S | | 5 Pollux Drive | | | | | NUMBER(S) | | Edwards AFB CA | 93524-7048 | | | [| NOMBER(S) | | | | | | | i . | | 12. DISTRIBUTION | / AVAILABILITY STA | TEMENT | | | - | | | | | | | ! | | | | | | | | | Approved for pub. | lic release; distributi | ion unlimited. | | | t . | | | | | | | • | | 13. SUPPLEMENTA | RY NOTES | | | | | | | | | | | : | | | | | | | | | 14. ABSTRACT | ······································ | | *************************************** | 77 | | | | | | | | į | | | | | | • | | | | | | | | | | | | | | | ! | | | | | | | ! | | | | | | | · | | | | | | | İ | | | | | • | | | | | | | | | | | | | | * | | | | | | | | | | | | | | • | | | | | | | | | | | 15. SUBJECT TERM | S | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | • | | | | | 6. SECURITY CLAS | SIFICATION OF: | | 17. LIMITATION | 10 MIMPED | Tion NAME OF THORSE | | | | | OF ABSTRACT | 18. NUMBER
OF PAGES | 19a. NAME OF RESPONSIBLE PERSON | | | | | | J. AMES | Leilani Richardson | | . REPORT | b. ABSTRACT | c. THIS PAGE | - | İ | | | | 1 | J. THO I AGE | | 1 | 19b. TELEPHONE NUMBER | 62 Unclassified Unclassified 122025 Unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 (include area code) (661) 275-5015 MEMORANDUM FOR PRS (Contractor/In-House Publication) FROM: PROI (TI) (STINFO) 12 October 2000 SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-2000-193 Christe, K.O. (ERC), Zhang, X. (USC), Sheehy, J. (PRSP), Bau, R. (USC), "Crystal Structure of CIF₄+SbF₆-, Normal Coordinate Analyses of CIF₄+ BrF₄+, IF₄+, SF₄, SeF₄, and TeF₄, and Simple Method for Calculating the Effects of Fluorine Bridging on the Structure and Vibrational Spectra of Ions in a Strongly Interacting Ionic Solid" # Journal of the American Chemical Society (Statement A) | b.) military/national critical technology, c.) | oreign Disclosure Office for: a.) appropriateness of distribution statemed export controls or distribution restrictions, nation, and e.) technical sensitivity and/or economic sensitivity. | |---|---| | Comments: | · · · · · · · · · · · · · · · · · · · | | | | | | | | Signature | Date | | and/or b) possible higher headquarters review | ublic Affairs Office for: a.) appropriateness for public release | | Signature | Date | | b.) appropriateness of distribution statemen
e.) parallel review completed if required, an | TINFO for: a.) changes if approved as amended, it, c.) military/national critical technology, d.) economic sensitivity, and f.) format and completion of meeting clearance form if required | | Signature | Date | | appropriateness of distribution statement, dinational critical technology, and f.) data rigi | for: a.) technical accuracy, b.) appropriateness for audience, c.) .) technical sensitivity and economic sensitivity, e.) military/ hts and patentability | | | APPROVED/APPROVED AS AMENDED/DISAPPROVE | | | PHILIP A. KESSEL Date | | | Technical Advisor Propulsion Science and Advanced Concepts Division | | Cleared (PA) | | | Logged (PA) | | | Notified (PA) Copied & Distributed (STINFO) | | | This original is for PA files | | Crystal Structure of ClF₄⁺SbF₆, Normal Coordinate Analyses of ClF₄⁺ BrF₄⁺, IF₄⁺, SF₄, SeF₄, and TeF₄, and Simple Method for Calculating the Effects of Fluorine Bridging on the Structure and Vibrational Spectra of Ions in a #### **Strongly Interacting Ionic Solid** Karl O. Christe,*†‡ Xiongzhi Zhang,‡ Jeffrey A. Sheehy,† and Robert Bau‡ Propulsion Sciences and Advanced Concepts Division, Air Force Research Laboratory (AFRL/PRS), Edwards AFB, California 93524, and Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089 #### **Abstract** The crystal structure of the 1:1 adduct CIF₅·SbF₅ was determined and contains discrete CIF₄⁺ and SbF₆ ions. The CIF₄⁺ cation has a pseudo-trigonal bipyramidal structure with two longer and more ionic axial bonds and two shorter and more covalent equatorial bonds. The third equatorial position is occupied by a sterically active free valence electron pair of chlorine. The coordination about the chlorine atom is completed by two longer fluorine contacts in the equatorial plane, resulting in the formation of infinite zigzag chains of alternating CIF₄⁺ and cisfluorine bridged SbF₆ ions. Electronic structure calculations were carried out for the isoelectronic series CIF₄⁺, BrF₄⁺, IF₄⁺ and SF₄, SeF₄, TeF₄ at the B3LYP, MP2 and CCSD(T) levels of theory and used to revise the previous vibrational assignments and force fields. The discrepancies between the vibrational spectra observed for CIF₄⁺ in CIF₄⁺SbF₆ and those calculated for free CIF₄⁺ are largely due to the fluorine bridging that compresses the equatorial F-Cl-F bond angle and increases the barrier towards equatorial-axial fluorine exchange by the Berry mechanism. A computationally simple model, involving CIF₄⁺ and two fluorine bridged HF molecules at a fixed distance as additional equatorial ligands, was used to simulate the bridging in the infinite chain structure and greatly improved the fit between observed and calculated spectra. #### Introduction Binary halogen fluorides and their ions are ideally suited for studying molecular structures and bonding. 1-3 They cover a wide range of oxidation states from +I to +VII and coordination numbers from one to eight, including many examples of hypervalent compounds.⁴ The following binary chlorine fluorides are known: ClF, ClF₃ and ClF₅;⁵ they are amphoteric and, with strong Lewis acids, they can form adducts containing the $\text{Cl}_2\text{F}^+,^{6-8}$ ClF_2^{+} $^{9-20}$ and ClF_4^{+} ²¹⁻²² cations, respectively. Crystal structures, however, are known only for the ClF₂⁺ salts. ¹⁵⁻²⁰ Although these structures confirm the predominantly ionic nature of the adducts, strong interactions between the ClF2+ cations and the anions were observed which result in infinite chains, distort some of the ions and complicate the vibrational spectra. Chlorine pentafluoride also forms adducts with AsF5 and SbF5, but only the ClF5. SbF5 complex is stable at room temperature. 21,22 Based on their vibrational spectra, a predominantly ionic structure was proposed^{22,23} for the ClF₅·MF₅ adducts with ClF₄⁺ most likely possessing a pseudo-trigonal bipyramidal structure of C_{2v} symmetry, similar to those found for isoelectronic $SF_4^{\,24}$ and the heavier halogen analogues BrF₄^{+ 25} and IF₄^{+ 26, 27} In view of the significant cation-anion interactions found for the related ClF₂⁺ salts, ¹⁵⁻²⁰ it was desirable to confirm by x-ray diffraction the postulated C_{2v} structure for ClF_4^+ , to obtain its exact geometry, and to determine the nature and influence of any interionic interactions. Electronic structure calculations were used to critically examine the previously reported crystal structures for BrF₄⁺ ²⁵ and IF₄⁺, ²⁶, ²⁷ and the vibrational spectra of the ClF₄⁺, BrF₄⁺, and IF₄⁺ cations^{22, 28} and of the isoelectronic SF₄, SeF₄ and TeF₄ molecules. Furthermore, we outline a computationally simple method for modeling the influence of interionic fluorine bridging on the structure and vibrational spectra of the free ions. ## Experimental Crystal Structure Determination. A sample of ClF₄+SbF₆ was prepared as previously described, ^{21, 22} and single crystals were grown from solutions in anhydrous HF. Due to the moisture sensitivity of the crystals, a suitable crystal was selected and mounted with a drop of perfluoroether oil under a flow of cold dry nitrogen. The diffraction data were collected at -100 °C, using a Siemens/Nicolet/Syntex P21 diffractometer with MoKα radiation. The structure was solved by standard heavy-atom methods. The coordinates of the antimony and chlorine atoms were found from direct methods, and the atomic positions of the
remaining fluorine atoms were revealed by subsequent difference-Fourier maps.²⁹ Theoretical Calculations. Theoretical calculations were carried out on IBM RS/6000 work stations using the Gaussian 98³⁰ and ACES II³¹ program systems and the density functional B3LYP³² and the correlated MP2³³ and single-and double-excitation coupled cluster methods,³⁴ including a non-iterative treatment of connected triple excitations.³⁵ It was desirable to perform the calculations for SF₄, ClF₄⁺, SeF₄, BrF₄⁺, TeF₄, and IF₄⁺ by consistent methods. However, they involve atoms from the second, third, and fourth rows of the periodic table and it was not clear whether a single type of atomic basis sets could be found that would give accurate results for all six compounds. Whereas there are many choices of high-quality basis sets for second- and third-row elements, the choices available for tellurium and iodine are far fewer and generally lower in quality. Consequently, several different basis sets were examined, most of which involved the use of effective-core potentials for the inner-shell electrons on the central atoms. The criteria used for determining the relative suitability of the basis sets for the present purposes was how well the experimentally observed vibrational spectra of SF_4 and SeF_4 was reproduced by the calculations. These molecules were chosen for the basisset study because excellent experimental data are available for a comparison with the calculated frequencies and because there are many basis set choices for sulfur and selenium. Ultimately, it was found that the best results were obtained with the so-called DFT/DZVP all-electron basis sets, ^{36,37} supplemented with one f function taken from either the cc-pVTZ basis sets of Woon and Dunning ³⁸ (exponents: S = 0.557, Cl = 0.706, Se = 0.462, Br = 0.552) or the polarization functions of Ahlrichs (exponents: Te = 0.474, Te = 0.486) on the heavy atoms, and the 6-311+G(2d) basis sets of Pople on fluorine. The calculated Hessian matrices (second derivatives of the energy with respect to Cartesian coordinates) were converted to symmetry-adapted internal coordinates for subsequent normal coordinate analyses using the program systems GAMESS⁴¹ and Bmtrx. ⁴² ### **Results and Discussion** Crystal Structure of $ClF_4^+SbF_6^-$. $ClF_4^+SbF_6^-$ crystallizes in the orthorhombic space group Pbcm with the unit cell parameters given in Table 1. One hemisphere of data (3645 reflections) were collected at -100°C, merged to give one unique octant of data (880 reflections), and refined to a final agreement factor of R = 2.3 % for 854 reflections having $I > 2\sigma(I)$. The crystal and structure refinement data, atomic coordinates and isotropic displacement parameters, and selected bond distances and angles are summarized in Tables 1-3, respectively. The structures of the ClF_4^+ and SbF_6^- ions and the numbering scheme are shown in Figure 1, while the packing diagram and the interionic fluorine bridges are depicted in Figures 2 and 3, respectively. As can be seen from Figures 1 and 2, the structure of the ClF_5 SbF₅ adduct is predominantly ionic consisting of discrete ClF_4 cations and SbF₆ anions in a simple packing arrangement. The structure of the ClF_4 cation is best described as a trigonal bipyramid in which the four fluorine ligands occupy the two axial and two of the equatorial positions, while a sterically active free valence electron pair fills the third equatorial position. The coordination in the equatorial plane is completed by two fluorine bridges with two different SbF_6^- anions, resulting in infinite zigzag chains along the *a*-axis (see Figure 3). The two interionic fluorine bridges formed by each SbF_6^- anion are *cis* with respect to each other and distort the SbF_6^- octahedron from O_h to C_{2v} symmetry. The Cl-F bond lengths of the two fluorine bridges, measuring 2.41 and 2.43 Å, respectively, are comparable to those of 2.23-2.43 Å found for similar ClF_2^+ salts, $^{15-20}$ and are significantly shorter than the Cl-F van der Waals distance of 3.15 Å. The two equatorial and the two bridging fluorines and the chlorine atoms of ClF_4^+ are perfectly planar, as shown by the sum of their bond angles of 360.0 ° (see Table 3). The geometry of ClF₄⁺, given in Table 3, is in accord with the VSEPR model of molecular geometry. In an AX₄E-type species, such as ClF₄⁺, the crowding of the axial positions results in longer and more ionic axial bonds, while the more repulsive electron pair domain of the equatorial free valence electron pair E causes compressions of the equatorial F-Cl-F angle from the ideal 120 to 103 of and of the axial F-Cl-F angle from 180 to 174 of the equatorial free valence electron pair E causes compressions of the equatorial F-Cl-F angle from 180 to 174 of the equatorial free valence electron pair E causes compressions of the equatorial F-Cl-F angle from 180 to 174 of the equatorial free valence electron pair E causes compressions of the equatorial F-Cl-F angle from 180 to 174 of the equatorial free valence electron pair E causes compressions of the equatorial F-Cl-F angle from 180 to 174 of the equatorial free valence electron pair E causes compressions of the equatorial F-Cl-F angle from 180 to 174 of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial F-Cl-F angle from 180 to 174 of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pair E causes compressions of the equatorial free valence electron pa Structure Calculations for Free Gaseous CIF₄⁺, BrF₄⁺, IF₄⁺, and Isoelectronic SF₄, SeF₄, TeF₄. Since the geometries and vibrational frequencies of SF₄^{24, 28} and SeF₄⁴⁶ are well known, these molecules were used to evaluate the quality of different basis sets at the B3LYP,³² MP2,³³ and CCSD(T)^{34, 35} levels of theory, with the DFT-DZVP basis^{36,37} giving the best results. As can be seen from Tables 4 and 5, the MP2 and CCSD(T) calculations gave almost identical results. The density functional B3LYP method duplicated best the observed bond angles, but slightly overestimated the bond lengths. The observed and calculated geometries of ClF_4^+ are summarized in Table 6. Scaling the calculated Cl-F bond lengths with correction factors derived from the SF₄ data of Table 4, gives for free ClF_4^+ the predicted values shown in Table 6. The major discrepancies between these values and the ones, observed for ClF_4^+ in solid $ClF_4^+SbF_6^-$ are the compression of the equatorial angle by about 4° and an increase in the difference between the axial and the equatorial bond lengths by about 2.3 pm in $ClF_4^+SbF_6^-$. These changes can be attributed to the influence of the two equatorial fluorine bridges from two neighboring SbF_6^- anions. This conclusion is supported by model calculations for the bridged ClF_4^+ cation (see below). The minimum energy structure of ClF_4^+ had been disputed in several previous publications. Thus, Ungemach and Schaefer predicted, based on SCF calculations with minimum and double zeta basis sets, that ClF_4^+ should be square-pyramidal.⁴⁷ In a note added in proof, however, they state that the inclusion of d functions resulted in a minimum energy structure of C_{2v} symmetry with r $Cl-F_{ax}=1.63$ Å, r $Cl-F_{eq}=1.57$ Å, $_{\Box}F_{ax}$ - $Cl-F_{ax}=169.6$ °, and $_{\Box}F_{eq}$ - $Cl-F_{eq}=109.7$ °. This finding was confirmed by So.⁴⁸ However, he surprisingly found that the axial bond (1.570 Å) was shorter than the equatorial one (1.632 Å) and his F_{eq} - $Cl-F_{eq}$ bond angle of 117.42° was also very different from that given by Ungemach and Schaefer. The C_{2v} geometry given by Ungemach and Schaefer was confirmed by several subsequent studies.⁴⁹⁻⁵² It was also shown⁴⁹ that at the RHF/DZP level the energy difference between the minimum energy C_{2v} structure and the square-pyramidal C_{4v} structure, which represents the transition state for the equatorial-axial ligand exchange by the Berry mechanism, is only 6.7 kcal mol⁻¹, while a square-planar D_{4h} structure was found to lie 59.5 kcal/mol above the C_{2v} structure.⁴⁹ Surprisingly, however, the same study⁴⁹ found that at the MP2/DZP level the D_{4h} structure becomes energetically favored over the C_{2v} structure by 16.2 kcal/mol. In our calculations, it was found that the C_{2v} structure was the minimum energy structure at the B3LYP, MP2 and CCSD(T) levels of theory with all the basis sets used. Duplication of previous computations showed that the omission of d-functions from basis sets indeed results in a square-pyramidal C_{4v} structure being the minimum. This is not surprising in view of the small energy difference of ~7kcal/mol between the C_{2v} and C_{4v} structures. However, the big change of 75.7 kcal/mol, reported⁴⁹ for the difference between the C_{2v} and D_{4h} structures on going from the RHF to the MP2 level could not be confirmed. Table 7 gives a comparison between the observed and calculated structures of BrF_4^+ and IF_4^+ . For IF_4^+ , the deviations between the observed and calculated values agree with those noted for ClF_4^+ , but are more
pronounced due to increased fluorine bridging. For BrF_4^+ , however, the observed bond lengths are much too long and also the axial bond angle is too big. These large deviations, together with the extremely large uncertainties in the crystal structure of $BrF_4^+Sb_2F_{11}^-$, 25 demonstrate the need for a redetermination of its crystal structure. Structure Calculations for Fluorine Bridged CIF_4^+ in Solid $CIF_4^+SbF_6^-$. In many predominately ionic structures, consisting of coordinationwise unsaturated cations and saturated fluoro- or oxofluoro-anions, strong fluorine bridging is observed between the anions and cations. These fluorine bridges fill empty coordination sites of the cation and, at the same time, lower the symmetry of the anions. These effects profoundly influence the vibrational spectra of these compounds. They give rise to additional bands in the anion spectra due to the symmetry lowering from O_h to C_{2v} and create new vibrations due to the bridge bonds. Although the existence of these bridges has been well established through crystal structure studies, their influence on the vibrational spectra has previously not been analyzed in sufficient detail and as a result, the vibrational assignments of the bridging modes have in most cases either been ignored or been poor guesses. This is not surprising because the cations generally form multiple fluorine bridges with different partners, thus resulting in difficult to analyze infinite chains. To circumvent this problem, most previous investigators have limited their analyses to symmetry lowering of the individual ions, followed by a factor group analysis. Whereas this approach is not unreasonable for the anions, because their coordination number remains the same and their geometry does not change dramatically, it accounts neither for the structural changes in the cation nor for the newly generated bridging modes. One possible approach to duplicate the ClF_4^+ and SbF_6^- environments in the infinite zigzag chain involves the calculation of the trinuclear segments (1) and (2), using the observed Cl---F bridge distances as the only constraints and forcing the Sb- F_6 , Sb- F_7 , Sb- F_{12} and Sb- F_{13} distances to be equal, while the remaining parameters are optimized. This approach, however, still presents the following major problems. (i)Charge neutralization and chain termination become issues. In structure (1), the ClF_4^+ cation effectively becomes a polyanion; in structure (2), two F ions, F_6^- and F_6^- , must be added to maintain the overall negative charge and the correct coordination around the chlorine atoms, but result in computationally unstable configurations that want to loose fluoride ions. (ii) Even with density functional methods and limited basis sets, the required computational effort is still large, and a vibrational analysis is complicated. These problems were overcome in the following manner. Replacement of the two terminal SbF_6^- anions in (1) by neutral hydrogen fluoride molecules (3) maintains the positive charge of ClF_4^+ and greatly simplifies the calculation, while simulating well the two covalently bound, bridging fluorine ligands which were again constrained to the observed Cl-F bond distance of 2.43 Å. In Table 8, the geometries calculated for ClF₄⁺•2HF and free ClF₄⁺ at the B3LYP/B4 level are compared to that observed for ClF₄⁺ in ClF₄⁺5bF₆. As can be seen, the equatorial ClF₂ bond angle in ClF₄⁺•2HF decreases strongly from free ClF₄⁺ and the axial bond length increases, as expected for an increased ligand crowding in the equatorial plane due to the fluorine bridges. Furthermore, the bond length difference between equatorial and axial bonds increases from free ClF₄⁺ to ClF₄⁺•2HF. All these changes are in the same direction, as observed for ClF₄⁺ in ClF₄⁺SbF₆⁻ and confirm that the discrepancies between the calculated geometry of free ClF₄⁺ and the observed geometry of ClF₄⁺ in solid ClF₄⁺SbF₆⁻ are mainly due to fluorine bridge bonds and not to computational shortcomings. A comparison of the calculated geometries of $[SbF_6-ClF_4-SbF_6]^-$ and free ClF_4^+ shows that the more rigorous treatment of doubly bridged ClF_4^+ as a trinuclear segment results in similar, although more pronounced trends. Thus, on going from free ClF_4^+ to $[SbF_6-ClF_4-SbF_6]^-$, r(ClFax), r(ClFeq) and $\Box(FaxClF_{ax})$ increased by 4.5 pm, 2.7 pm, and 1.1 °, respectively, while $\Box(FeqClFeq)$ was compressed by 12.1 °. It therefore appears that the simplified model with HF bridging groups approximates the binding in ClF_4SbF_6 better than the more elaborate trinuclear model. Modeling the SbF₆ distortion was simpler. The only constraint imposed on SbF₆ was forcing the two equatorial Sb-F bonds, that are involved in the cis-fluorine bridging, to be 3 pm longer than the two axial Sb-F bonds (the same amount as that observed in the crystal structure) and allowing the rest of the structure to maximize. The resulting structure is compared in Figure 4 to that observed for the crystal structure of ClF₄SbF₆. The calculated structure exhibits angle changes, similar to but less pronounced than those observed for SbF₆⁻ in ClF₄SbF₆. This can be attributed to the fact that in the calculated structure the Sb-F bonds *trans* to the fluorine bridges also become somewhat longer (*trans*-effect) and therefore, the angle deviations from 90 ° become smaller. #### **Vibrational Spectra** SF₄. The observed and unscaled and scaled calculated vibrational spectra of SF₄ are listed in Table 9. The scaled B3LYP, MP2 and CCSD(T) frequencies fit about equally well, but the MP2 and CCSD(T) sets require less scaling. The assignment of the vibrational spectra of SF₄ based on experimental data alone had been a most difficult and frustrating task and required at least 13 publications from several different laboratories.²⁸ In spite of all this previous work, our present study reveals that even in the most recent reassignment²⁸ there are still two errors. The infrared inactive Raman band observed at 475 cm⁻¹ must be $v_5(A_2)$; and the infrared inactive $v_7(B_1)$ Raman band should occur at about 540 cm⁻¹ and is apparently hidden by the two very intense Raman bands, $v_2(A_1)$ and $v_3(A_1)$ at 558 and 532 cm⁻¹, respectively. This reassignment results in an excellent fit between observed and calculated spectra, particularly if it is kept in mind that no anharmonicity corrections have been applied to the observed frequencies. CIF₄⁺. Table 10 compares the vibrational frequencies calculated for free gaseous ClF₄⁺ to those observed for solid ClF₄⁺SbF₆⁻. As expected, the agreement is not as good as for isoelectronic SF₄ where gas phase values were compared. However, the agreement is still very satisfactory and shows that the previously proposed²² assignments are correct. As for SF₄, the MP2 set gives the best frequency fit and the CCSD(T) set requires the least scaling. The agreement between the observed and the calculated MP2 values is better than 16 cm^{-1} for all modes, except for $v_4(A_1)$ where the discrepancy of 69 cm⁻¹ is huge. This mode represents the antisymmetric combination of the axial and the equatorial scissoring motions (4) and is responsible for the inversion of the axial and the equatorial ligands by the Berry pseudo-rotation mechanism.⁵⁴ As was pointed out already above and is also transparent from structure (1), the two equatorial fluorine bridges impede these motions and thereby increase the frequency of this mode and raise the barrier to the equatorial-axial ligand exchange in the solid. The influence of the fluorine bridges in solid ClF₄⁺SbF₆ on the vibrational frequencies of ClF₄⁺ was modeled, as described above for the geometries, at the B3LYP level with two bridging HF ligands. The results are summarized in Table 11 and show that the large discrepancy of 85 cm⁻¹ between the calculated frequency of v₄ for free ClF₄⁺ and the observed one in ClF₄⁺SbF₆ is indeed due to the fluorine bridging. For the bridged ClF₄⁺•2HF model, the discrepancy between the calculated and the observed frequencies of v₄ shrinks to 13 cm⁻¹ and the fit of the remaining 8 frequencies was also greatly improved by 46 cm⁻¹. This result demonstrates that typical fluorine bridges, as encountered in many main group fluoride salts, cannot be ignored in a thorough analysis, and that our simple model of using HF to replace large counter-ions and infinite chains is well suited for simulating the observed frequencies. As pointed out above, most previous analysis had failed to correctly identify and assign the fluorine bridging modes in the infinite-chain, fluorine-bridged salts. Table 12 summarizes the results from our normal coordinate analysis of ClF₄⁺•2HF. As a nine-atomic species, it has 21 normal modes. Of these, 6 are associated with hydrogen motions (see footnote a) of Table 12) and are of little interest for our analysis, because hydrogen has been used only as a simulant for an SbF₅ group and the Sb-F modes are already included in the analysis of the (C_{2v}) SbF₆ ion. It should be noted that the two hydrogen rocking modes have imaginary frequencies because constraining the Cl-F bridge bond length to the observed value resulted in a maximized geometry which is not a global minimum. The remaining 15 modes can be separated into nine fundamentals for ClF₄⁺ (see Table 11) and six fundamentals for the fluorine bridges (see Table 12). The six fundamentals for the fluorine bridge modes are highly characteristic, except for the symmetric ClF_{2BR} mode, $v_1'(A_1)$, which strongly couples with the Berry mode, $v_4(A_1)$, of ClF₄⁺ (see footnote c of Table 11), due to their similar motions and frequencies. These mixings of the S3 and S4 symmetry coordinates of ClF₄⁺ and of S4 of ClF₄⁺ with S1' of fluorine bridged ClF₄⁺ account for most of the difficulties encountered with attempts to fit the observed vibrational spectra with less
rigorous analyses. Inspection of Tables 11 and 12 demonstrates that the bridging modes in ClF₄+SbF₆ occur below 230 cm⁻¹ and, therefore, interfere only with the lowest frequency mode of CIF4⁺. Since most of the bridging modes of solid CIF4⁺SbF6⁻ occur in the range of the lattice modes, reliable observation and analysis of these modes are presently not possible. SeF₄. Table 13 shows a comparison of the observed and calculated vibrational frequencies of free gaseous SeF₄. The listed observed frequencies are the gas phase values, ^{55,56} except for that of v₉ which was observed only as a very weak and broad band.⁵⁵ For this mode the averaged frequency of the molecule isolated in different matrices⁵⁵ was used. As in the case of gaseous SeF₄ (Table 9), the agreement between observed and calculated frequencies is excellent and, for the MP2 set, the scaling factors are also close to unity. These results lend strong support to our revised assignments given in Table 13. Of the previous assignments, only those given by Alexander and Beattie for 6 of the modes, ⁵⁶ are correct. In the paper by Ramaswamy, ⁵⁷ seven of the nine fundamentals were assigned incorrectly; in the study by Adams and Downs, ⁵⁵ six fundamentals were assigned correctly, two incorrectly and one was missing; and in the most recent study by Seppelt of SeF₄ in CH₃F solution, ⁵⁸ only four of the nine fundamentals were assigned correctly, and the latter assignments unfortunately have found their way into recent compilations, such as the book by Nakamoto. ⁵⁹ **TeF**₄. The observed and calculated vibrational frequencies of TeF₄ are compared in Table 13. Since TeF₄ is polymeric at room temperature, ⁶⁰ the frequencies of matrix isolated TeF₄⁵⁵ were used as the experimental values. The agreement between observed and calculated frequencies and infrared intensities is again very good and the scaling factors are similar to those used for SeF₄. Our results confirm the experimental frequencies, but show that the previous assignments⁵⁵ for $v_3(A_1)$ and $v_7(B_1)$ must be reversed. BrF₄⁺ and IF₄⁺. The calculated vibrational frequencies for free gaseous BrF₄⁺ and IF₄⁺ are summarized in Table 14. Only partial experimental values are given for BrF₄⁺ and no values are given for IF₄⁺ because the reported spectra for these two cations are incomplete, their crystal structures are poorly determined, and fluorine bridging is expected to become more pronounced with increasing atomic weights of the halogen central atoms. Clearly, both cations should be thoroughly reinvestigated. C_{2v} Distorted SbF₆. To judge the influence of fluorine bridging on the vibrational spectra of SbF₆, the spectra of octahedral SbF₆ and of C_{2v} distorted SbF₆ were calculated at the B3LYP level. For (O_h) SbF₆, r was found to be 1.923 Å, and for (C_{2v}) SbF₆ the geometry given in Figure 4b was used. The calculated vibrational spectra are summarized in Table 15 and show that even relatively small distortions of about 0.15 ° for some of the angles and of about 0.03 Å for some of the bonds cause significant changes in the vibrational spectra and, particularly, in the stretching modes. A detailed analysis of the SbF₆ part in the previously reported²² spectra of ClF₄+SbF₆ was not carried out due to complications caused by the presence of some Sb₂F₁₁ bands and an overlap with at least three fundamentals of ClF₄+, although the observed spectra²² appear to support the above conclusions. Normal Coordinate Analyses. Normal coordinate analyses were carried out for the two isoelectronic series SF₄, SeF₄, TeF₄ and ClF₄⁺, BrF₄⁺, IF₄⁺. The results are summarized in Tables 16-21 and show that the A₂, B₁ and B₂ vibrations are highly characteristic for all six compounds. For the A₁ block, however, strong mixing of the symmetry coordinates is observed. As previously discussed for ClF₄⁺, 23 SF₄, 23,53 and PF₄, 61 the v₃ and v₄ deformation modes are symmetric and antisymmetric combinations of the S3 and S4 symmetry coordinates, respectively. The v₃ mode is the umbrella deformation, and v₄ is the equatorial-axial ligand exchange motion involved in the Berry pseudorotation mechanism. ⁵⁴ In addition to this mixing of the deformation modes, v₁ which is mainly equatorial stretching, contains strong contributions from S3 and S4 that decrease with increasing mass of the central atom. The force constants of greatest interest are the internal equatorial and axial stretching force constants (see Table 22 and Figure 5). The data exhibit the expected smooth trends and mass coupling effects, except for one surprising result. With increasing mass of the central atom, the equatorial stretching force constants decrease for the neutral XF₄ molecules while for the XF₄⁺ cations they increase. This difference is due to the fact that the axial bonds in these pseudotrigonal bipyramidal species contain different contributions from semi-ionic, 3center-4electron bonding. Semi-ionic bonding is favored by formal negative charges and, to a much lesser extent, by a decreasing mass of the central atom. Since the stretching force constants reflect only contributions from covalent bonding, their values for semi-ionic bonds should be only 50% of those of covalent bonds. As can be seen from Table 22, this is pretty much the case for PF₄ ($f_R/f_r = 46\%$), while for SF₄ and ClF₄⁺ this ratio increases to 65 and 87%, respectively. These results show the importance of formal negative charges when comparing isoelectronic species containing semi-ionic bonds. Another important point must be made concerning the force fields. In all the previously published force fields, the value of F_{44} , the axial, in plane bending force constant, had been badly underestimated by about 50% due to the undetermined nature of the previous A_1 block force constant solutions and the tempting low frequencies of v_4 . The high values, found for F_{44} in this study, are in much better agreement with the well determined⁶² value of F_{99} , the axial out of plane bending force constant. Based on Gillespie's model of points an equal repulsion on a sphere, 43 the values of F_{44} and F_{99} should be of similar magnitude. #### Conclusions This paper provides the first comprehensive and conclusive study of the CIF₅·SbF₅ adduct. It shows that CIF₅·SbF₅ is ionic containing discrete CIF₄⁺ and SbF₆ ions that are interconnected and distorted by fluorine bridges. The CIF₄⁺ cation has a pseudo-trigonal bypyramidal structure, in accord with the VSEPR predictions^{43,44} and the known structure of isoelectronic SF₄.²⁴ The results of this study are supported by electronic structure calculations for the CIF₄⁺, BrF₄⁺, IF₄⁺ and the isoelectronic SF₄, SeF₄, TeF₄ series. They permit a reassignment of the observed vibrational spectra and an analysis of their trends. Our results also show that the previously reported experimental structures and vibrational analyses of BrF₄⁺ and IF₄⁺ are inaccurate and/or incomplete and need to be repeated. Furthermore, it is shown that in these compounds fluorine bridging strongly distorts the individual ions. A simple method for modeling this bridging is described and can account for most of the differences between the experimental geometry and vibrational spectra of CIF₄⁺SbF₆⁻ and those predicted for the free isolated ions. It is also shown that the previous literature data for the closely related SF₄, SeF₄ and TeF₄ molecules and BrF₄⁺ and IF₄⁺ ions need major revision. #### Acknowledgements The authors thank the National Science Foundation and the Air Force Office of Scientific Research for financial support. # **Supporting Information Available** Tables of structure determination summary, atomic coordinates, bond lengths and angles and anisotropic displacement parameters of ClF_4SbF_6 in ClF format. This material is available free of charge via the internet at http://pubs.acs.org. - †Air Force Research Laboratory - ‡ University of Southern California #### References - 1. Christe, K.O. Proceedings from the XXIVth International Congress of Pure and Applied Chemistry 1974, 4, 115. - Christe, K.O.; Wilson, W.W.; Drake, G.W.; Dixon, D.A.; Boatz, J.A.; Gnann, R.Z. J. Am. Chem. Soc. 1998, 120, 4711. - 3. Christe, K.O.; Curtis, E.C.; Dixon, D.A. J. Am. Chem. Soc. 1993, 115, 1520. - 4. Musher, J.L. Angew. Chem. Int. Ed. Engl. 1968, 8, 54. - 5. Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, Pergamon Press, Oxford, 1986, p. 964-978. - 6. Christe, K.O.; Sawodny, W. Inorg. Chem. 1969, 8, 212. - 7. Gillespie, R.J.; Morton, M.J. Inorg. Chem. 1970, 9, 811. - 8. Frenking, G.; Koch, W. Inorg. Chem. 1990, 29, 4513. - Seel, F.; Detmer, O. Angew. Chem. 1958, 70, 163; Z. Anorg. Allgem. Chem. 1959, 301, 113. - 10. Bartlett, N.; Lohmann, D.H. J. Chem. Soc. 1962, 5253. - 11. Selig, H.; Shamir, J. Inorg. Chem. 1964, 3, 294. - 12. Christe, K.O.; Pavlath, A.V. Z. Anorg. Allgem. Chem. 1965, 335, 210. - 13. Christe, K.O.; Sawodny, W. Inorg. Chem. 1967, 6, 313. - 14. Gillespie, R.J.; Morton, M.J. Inorg. Chem. 1970, 9, 616. - 15. Edwards, A.J.; Sills, R.J.C. J. Chem. Soc., A 1970, 2697. - 16. Lynton, H.; Passmore, J. Can. J. Chem. 1971, 49, 2539. - 17. Antipin, M. Yu.; Ellern, A.M.; Sukhoverkhov, V.F.; Struchkov, Yu. T.; Buslaev, Yu. A. Russ. J. Inorg. Chem. 1988, 33, 171. - Ellern, A.M.; Antipin, M. Yu.; Sharabarin, A.V.; Struchkov, Yu. T. Russ. J. Inorg. Chem. 1991, 36, 1278. - Bougon, R.; Cicha, W.V.; Lance, M.; Neublat, L.; Nierlich, M.; Vigner, J. Inorg. Chem. 1991, 30, 102. - 20. Ellern, A.M.; Antipin, M. Yu.; Sharabarin, A.V.; Struchkov, Yu. T. Russ. J. Inorg. Chem. 1992, 37, 46. - 21. Christe, K.O.; Pilipovich, D. Inorg. Chem. 1969, 8, 391. - 22. Christe, K.O.; Sawodny, W. Inorg. Chem. 1973, 12, 2879. - 23. Christe, K.O.; Curtis, E.C.; Schack, C.J.; Cyvin, S.J.; Brunvoll, J.; Sawodny, W. Spectrochem. Acta, Part A 1976, 36, 1141. - 24. Tolles, W.M.; Gwinn, W.D. J. Chem. Phys. 1962, 36, 1119. - 25. Lind, M.D.; Christe, K.O.
Inorg. Chem. 1972, 11, 608. - 26. Baird, H.W.; Giles, H.F. Acta Cryst. 1969, A25, 115. - 27. Edwards, A.J.; Taylor, P. J. Chem. Soc. Dalton 1975, 2174. - 28. Sawodny, W.; Birk, K.; Fogarasi, G.; Christe, K.O. Z. Naturforsch 1980, 35B, 1137, and references cited therein. - 29. Sheldrick, G.M. Programs SHELX L86 and SHELX L93, University of Goettingen, Germany. - Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.A., Jr.; Stratmann, R.E.; Burant, J.C.; Dapprich, S.; Millam, J.M.; Daniels, R.E.; Kudin, K.N.; Strain, M.C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Cioslowski, J.; Ortiz, J.V.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Andres, J.L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E.S.; Pople, J.A. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998. - Stanton, J.F.; Gauss, J.; Watts, J.D.; Nooijen, M.; Oliphant, N.; Perera, S.A.; Szalay, P.G.; Lauderdale, W.J.; Gwaltney, S.R.; Beck, S.; Balkova, A.; Bernholdt, D.E.; Baeck, K.K.; Rozyczko, P.; Sekino, H.; Hober, C.; Bartlett, R.J. ACES II, Quantum Theory Project; University of Florida: Integral packages included are VMOL (Almlof, J.; Taylor, P.R.), BPROPS (Taylor, P.R.), and ABACUS (Helgaker, T.; Jensen, H.J.Aa.; Jorgensen, P.; Olsen, J.; Taylor, P.R.) - The B3LYP functional uses a three-parameter exchange functional of Becke (B3) [Becke, A.D. J. Chem. Phys. 1993, 98, 5648; Stephens, P.J.; Devlin, C.F.; Chabalowski, C.F.; Frisch, M.J. J. Phys. Chem. 1994, 98, 11623] and the Lee, Yang, and Parr (LYP) correlation gradient-corrected functional [Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988, 37, 785]. - 33. a) Pople, J.A.; Binkley, J.S.; Seeger, R. Int. Quantum Chem. 1976, 10, 1. - b) Bartlett, R.J.; Silver, D.M. Int. Quantum Chem. 1975, 9, 183. - c) Dupuis, M.; Chin, S.; Marquez, A. in G. Malli (ed.), Relativistic and Electron Correlation Effects in Molecules, Plenum, New York, 1994. - d) Frisch, M.J.; Head-Gordon, M.; Pople, J.A. Chem. Phys. Lett. 1990, 166, 275. - e) Bartlett, R.J.; Stanton, R.J. Applications of post-Hartree-Fock methods: A Tutorial, in: Lipkowitz, K.B.; Boyd, D.B. (Eds.), Reviews of Computational Chemistry, Vol. V, VCH Publishers, New York, 1994. - 34. Purvis, G.D., III; Bartlett, R.J. J. Chem. Phys. 1982, 76, 1910. - 35. Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479. - 36. These local-spin-density-optimized Gaussian basis sets were developed by Nathalie Godbout and Jan Andzelm, and are made available courtesy of Cray Research, Inc. The general method by which they were developed is given in: Godbout, N.; Salahub, D.R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560. - Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information. - 38. a) Woon, D. E.; Dunning, Jr., T. H. J. Chem. Phys. 1993, 98, 1358. - b) Wilson, A. K.; woon, D. E.; Peterson, K. A.; Dunning, Jr., T. H. J. Chem. Phys. 1999, 110, 7667. - 39. Polarization functions are unpublished supplements to the basis sets described in: Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994,100,5829. - 40. Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265. - 41. Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.J.; Windus, T.L.; Dupuis, M.; Montgomery, J.A. J. Comput. Chem. 1993, 14, 1347. - 42. Komornicki, A. *Bmtrx*, Version 2.0; Polyatomics Research Institute: Redwood City, CA 1996. - 43. Bondi, A. J. Phys. Chem. 1964, 68, 441. - 44. Gillespie, R.J.; Hargittai, I. The VSEPR Model of Molecular Geometry, Allyn and Bacon, Boston, 1991, p.55. - 45. Gillespie, R.J.; Robinson, E.A. Angew. Chem. Int. Ed. Engl. 1996, 35, 495. - 46. Bowater, I.C.; Brown, R.D.; Burden, F.R. J. Mol. Spectrosc. 1968, 28, 454. - 47. Ungemach, S.R.; Schaefer, H.F., III. J. Am. Chem. Soc. 1976, 98, 1658; Chem. Phys. Lett. 1976, 38, 407. - 48. So, S-P. J. Chem. Soc., Faraday Trans. II 1981, 77, 213. - 49. Pershin, V.L.; Boldyrev, A.I. J. Mol. Struct, (Theochem.) 1987, 150, 171. - 50. Minyaev, R.M. Russ. J. Inorg. Chem. 1993, 38, 1300. - 51. Minyaev, R.M.; Wales, D.J. J. Chem. Soc., Faraday Trans. 1994, 90, 1831. - 52. Schleyer, P.v.R.; Mauksch, M. private communication. - 53. Christe, K.O.; Sawodny, W.; Pulay, P. J. Mol. Structure 1974, 21, 158. - 54. Berry, R.S. J. Chem. Phys. 1960, 32, 933. - 55. Adams, C.J.; Downs, A.J. Spectrochim. Acta 1972, 28A, 1841. - 56. Alexander, L.E.; Beattie, I.R. J. Chem. Soc. Dalton 1972, 1745. - 57. Ramaswamy, K.; Jayaraman, S. Ind. J. Pure Appl. Phys. 1970, 8, 625. - 58. Seppelt, K. Z. Anorg. Allg. Chem. 1975, 416, 12. - 59. Nakamoto, K. "Infrared and Raman Spectra of Inorganic and Coordination Compounds," John Wiley & Sons, New York, Fifth Edition, 1997. - 60. Edwards, A.J.; Hewaidy, F.I. J. Chem. Soc. A 1968, 3977. - Christe, K.O.; Dixon, D.A.; Mercier, H.P.A.; Sanders, J.P.C.; Schrobilgen, G.J.; Wilson, W.W. J. Am. Chem. Soc. 1994, 116, 2850. - 62. Christe, K.O.; Willner, H.; Sawodny, W. Spectrochim. Acta 1979, 35A, 1347. - 63. Pimentel, G.C. J. Chem. Phys. 1951, 19, 446. - 64. Hach, R.J.; Rundle, R.E. J. Am. Chem. Soc. 1951, 73, 4321. - 65. Rundle, R.E. J. Am. Chem. Soc. 1963, 85, 112. Table 1. Crystal data for $[ClF_4]^+[SbF_6]^-$ Empirical formula Cl F₁₀ Sb Formula weight 347.20 Temperature 193(2) K Wavelength 0.71073 A Crystal system Orthorhombic Space Group Pbcm (#57) Unit cell dimensions a = 5.9546(12) Å alpha = 90 deg. b = 15.1717(19) Å beta = 90 deg. c = 7.9598(17) Å gamma= 90 deg. Volume 719.7(2) Å³ Z 4 Final R indices [L>2 sigma(I)] R1 = 0.0220, wR2 = 0.0493 (854 data) R indices (all data) R1 = 0.0227, wR2 = 0.0496 (880 data) Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for [ClF₄]⁺[SbF₆]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. | | X | у | Z | U(eq) | |--------------|----------|---------|--------|-------| | Sb | 904(1) | 1402(1) | 2500 | 15(1) | | F (1) | -1565(4) | 2191(1) | 2500 | 25(1) | | F(2) | -1047(4) | 445(2) | 2500 | 37(1) | | F(3) | 2845(4) | 2392(1) | 2500 | 26(1) | | F(4) | 902(3) | 1429(1) | 162(3) | 34(1) | | F(5) | 3413(4) | 669(1) | 2500 | 33(1) | | Cl | 5883(1) | 3440(1) | 2500 | 16(1) | | F(11) | 4042(3) | 4140(1) | 2500 | 24(1) | | F(12) | 8045(4) | 3987(1) | 2500 | 25(1) | | F(13) | 5900(3) | 3496(1) | 472(2) | 33(1) | | | | | | | Table 3. Bond lengths $[\mathring{A}]$ and angles $[^{\circ}]$ for $[ClF_4]^{+}[SbF_6]^{-}$. | Sb-F(2)
Sb-F(4)
Sb-F(5)
Sb-F(3)
Sb-F(1)
Cl-F(11)
Cl-F(12) | 1.860(2)
1.863(2)
1.863(2)
1.895(2)
1.896(2)
1.527(2)
1.532(2) | |---|--| | Cl-F(13) | 1.617(2) | | ClF(1*)
ClF(3*) | 2.43
2.41 | | F(2)-Sb-F(4) | 90.97(5) | | F(4)-Sb-F(4*) | 177.47(9) | | F(2)-Sb-F(5) | 91.99(10) | | F(4)-Sb-F(5) | 90.78(5) | | F(2)-Sb- $F(3)$ | 178.95(9) | | F(4)-Sb- $F(3)$ | 89.02(5) | | F(5)-Sb-F(3) | 89.06(9) | | F(2)-Sb- $F(1)$ | 90.49(11) | | F(4)-Sb-F(1) | 89.18(5) | | F(5)-Sb-F(1) | 177.53(9) | | F(3)-Sb- $F(1)$ | 88.47(9) | | F(11)-Cl-F(12) | 103.08(12) | | F(11)-Cl-F(13) | 88.16(6) | | F(12)-Cl-F(13) | 88.06(6) | | F(13)-Cl-F(13*) | 173.92(13) | | F(11)-C1F(3*) | 85.4 | | F(12)-ClF(1*) | 84.0 | | F(1*)ClF(3*) | 87.5 | Table 4. Observed and calculated geometries^a of SF₄ | | obsd ^b | | calcd ^c ——— | | |-------------------------------|-------------------|-------|------------------------|---------| | | | B3LYP | MP2 | CCSD(T) | | r (S-F _{eq}) | 1.545(3) | 1.579 | 1.563 | 1.563 | | r (S-F _{ax}) | 1.646(3) | 1.681 | 1.660 | 1.657 | | $<$ (F_{eq} -S- F_{eq}) | 101.5(5) | 101.3 | 101.6 | 101.4 | | $<$ (F_{ax} -S- F_{ax}) | 173.1(5) | 172.4 | 171.9 | 171.6 | ^aBond distances in Å, angles in degrees. ^bData from ref 24. $^{^{\}circ}$ The following basis set was used for all calculations: S: DFT-DZVP; F: 6-311 + G(2d). Table 5. Observed and calculated geometries of SeF4 and TeF4 | | obsd ^b | cal | -SeF ₄ | | | ·TeF4 ^c ——
— calcd ^d — | | |-------------------------------|-------------------|-------|-------------------|---------|-------|---|---------| | | | B3LYP | MP2 | CCSD(T) | B3LYP | MP2 | CCSD(T) | | $r(X-F_{eq})$ | 1.682(4) | 1.718 | 1.701 | 1.703 | 1.879 | 1.862 | 1.866 | | $r(X-F_{ax})$ | 1.771(4) | 1.805 | 1.784 | 1.784 | 1.939 | 1.924 | 1.926 | | $<$ (F_{eq} -X- F_{eq}) | 100.6(7) | 100.6 | 101.0 | 100.9 | 103.1 | 101.0 | 101.1 | | $< (F_{ax}-X-F_{ax})$ | 169.2(7) | 169.2 | 168.1 | 167.5 | 159.4 | 161.2 | 160.5 | ^aBond distances in Å, angles in degrees. ^bData from ref 46. ^cTeF₄ is polymeric under normal conditions (ref 60) and no experimental structure for free TeF₄ is presently known. ^dThe following basis sets were used for all calculations: Se: DFT-DZVP + f(0.462); Te:DFT-DZVP + f(0.474); F:
6-311 + G(2d). Table 6. Observed and calculated geometries^a of ClF₄⁺ | | obsd ^b calcd ^b , free ClF ₄ ⁺ | | | | | |--------------------------------------|---|-------|-------|---------|------------------------------------| | | ClF ₄ +SbF ₆ | B3LYP | MP2 | CCSD(T) | free ClF ₄ ⁺ | | r (Cl-F _{eq}) | 1.530(2) | 1.577 | 1.543 | 1.557 | 1.539 | | r (Cl-F _{ax}) | 1.618(2) | 1.635 | 1.612 | 1.615 | 1.604 | | $< (F_{eq}\text{-}Cl\text{-}F_{eq})$ | 103.08(12) | 107.8 | 107.1 | 107.7 | 107.7 | | $<$ $(F_{ax}$ -Cl- $F_{ax})$ | 173.92(13) | 172.2 | 172.3 | 171.4 | 173.0 | ^aBond distances in Å, angles in degrees. ^bThe following basis set was used for all calculations: Cl:DFT-DZVP + f(0.706) from cc-pVTZ; F: 6-311+ G(2d). Table 7. Observed and calculated geometries^a for BrF_4^+ and IF_4^+ | | h | BrF ₄ + | d | | <u> </u> | — IF ₄ ⁺ — | calcd ^d | | |-------------------------------|---|--------------------|-------------------------------|---------|---|----------------------------------|--------------------|---------| | | obsd ^b BrF ₄ ⁺ Sb ₂ F ₁₁ | B3LYP | - calcd ^d -
MP2 | CCSD(T) | obsd ^c r
IF ₄ +Sb ₂ F ₁₁ | B3LYP | MP2 | CCSD(T) | | r (X-F _{eq}) | 1.77(12) | 1.700 | 1.672 | 1.683 | 1.77(3) | 1.838 | 1.818 | 1.823 | | $r(X-F_{ax})$ | 1.86(12) | 1.749 | 1.728 | 1.732 | 1.85(4) | 1.875 | 1.861 | 1.863 | | $<$ (F_{eq} -X- F_{eq}) | 95.5(50) | 104.9 | 104.9 | 105.4 | 92.4(12) | 106.8 | 103.8 | 104.2 | | $<$ $(F_{ax}$ -X- $F_{ax})$ | 173.5(61) | 168.8 | 168.2 | 167.2 | 160.3(12) | 158.3 | 161.2 | 160.3 | ^aBond distances in Å, angles in degrees. ^bData from ref 25. ^cAveraged bond lengths from ref 27. ^dThe following basis sets were used for all calculations: Br: DFT-DZVP + f(0.552) from cc-pVTZ; I: DFT-DZVP + f(0.486); F: -311 + G(2d). Table 8. Geometries of $ClF_4^+ - 2HF$ and free ClF_4^+ compared to that of ClF_4^+ in $ClF_4^+SbF_6$ | | —calculated ^b , E | —observed ^c —— | | |------------------------------|------------------------------------|-------------------------------------|--| | | free ClF ₄ ⁺ | ClF ₄ ⁺ • 2HF | ClF ₄ ⁺ SbF ₆ | | r (Cl-F _{eq}) | 1.577 | 1.582 | 1.530(2) | | r (Cl-F _{ax}) | 1.635 | 1.653 | 1.618(2) | | $<(F_{eq}\text{-Cl-}F_{eq})$ | 107.8 | 100.8 | 103.08(12) | | $< (F_{ax}$ -Cl- $F_{ax})$ | 172.2 | 172.8 | 173.92(13) | ^aBond distances in Å, angles in degrees. ^bThe same basis set as in Table 6 was used. ^cData from this study. Table 9. Observed and scaled (unscaled) calculated vibrational frequencies of SF₄ | S | specie | s approx mode description | | frequencies, cm ⁻¹ | | | |-----------------------|----------|---|---------------------|-----------------------------------|------------------------|-----------------| | | | | obsd ^b r | calcd ^c —— | | | | | | | | B3LYP | MP2 | CCSD(T) | | A_1 | ν_1 | vsym SF ₂ eq | 892 | 889 (856) [117, 14p] ^d | 887 (904) [125,12p] | 881 (900) [120] | | | ν_2 | vsym SF ₂ ax | 558 | 557 (537) [3.1,12p] | 558 (569) [3.2, 12p] | 561 (573) [3.4] | | | v_3 | sym comb of Sciss SF ₂ eq and ax | 532 | 537 (494) [22, 2.1p] | 539 (531) [26, 1.7p] | 538 (533) [26] | | | v_4 | asym comb of δsciss SF ₂ eq and ax | 228 | 226 (208) [1.2, .51p] | 226 (223) [1.0, 40p] | 226 (224) [.89] | | 1 ₂ | v_5 | τSF ₂ | 475 | 473 (435) [0, 1.2dp] | 471 (464) [0, 1.0dp] | 470 (465) [0] | | 1 | v_6 | vas SF ₂ ax | 730 | 741 (714) [659, 1.1dp] | 739 (753) [693, 1.2dp] | 740 (756) [680] | | | v_7 | δrock SF ₂ eq | [~532] ^e | 540 (497) [.21, .54dp] | 539 (531) [.43, .53dp] | 538 (533) [.85] | | B ₂ | ν_8 | vas SF ₂ eq | 867 | 858 (827) [187, 5.0dp] | 862 (879) [196, 4.3dp] | 862 (881) [184] | | | v_9 | δsciss SF ₂ ax out of plane | 353 | 354 (326) [12, 0.1dp] | 353 (348) [13, .06dp] | 356 (352) [14] | | sum | of (v | obsd + v calcd) | | 34 | 32 | 45 | | emț | piric al | scal. factors: v | | 1.03798 | 0.98080 | .97866 | | • | - | δ | | 1.08696 | 1.01559 | 1.01008 | ^aSeparate empirical scaling factors were used for the stretching and deformation vibrations to maximize the fit between observed and calculated frequencies. ^bData from ref 28. ^cUsing basis set from Table 4. ^dCalculated infrared and Raman intensities in km/mol and $Å^4/AMU$. ^eThis band coincides with and is obscured by v_3 . Table 10. Observed and scaled (unscaled) calculated vibrational frequencies of ${\rm ClF_4}^+$ | | vibration | frequencies, cm ⁻¹ | | | | | | | |--|--------------|-------------------------------|--|------------------------|-----------------|--|--|--| | obsd for | | | calcd for free ClF ₄ ⁺ | | | | | | | | | $ClF_4^+SbF_6^-$ | B3LYP | MP2 | CCSD(T) | | | | | A_1 | v_1 | 802[vs, 10] ^b | 778 (769) [49, 19p] ^c | 803 (856) [64,11p] | 774 (794) [49] | | | | | | v_2 | 574 [w, 6] | 583 (576) [6.0.18p] | 568 (605) [5.7, 13p] | 583 (598) [4.7] | | | | | | v_3 | 515 [sh, 0.2] | 506 (475) [21, 3.1p] | 515 (526) [26, 1.7p] | 508 (509) [24] | | | | | | v_4 | 235 [-, 0.5] | 150 (141) [.55, 1.1wp] | 166 (169) [.69, .76wp] | 159 (159) [.50] | | | | | A_2 | v_5 | 475 [-, 1] | 488 (458) [0, 2.4dp] | 488 (498) [0, 2.0dp] | 488 (489) [0] | | | | | B_1 | v_6 | 803 [vs, ?] | 841 (831) [437, .11dp] | 809 (862) [478, .23dp] | 833 (855) [428] | | | | | | v_7 | 534 [mw, 1] | 538 (505) [5.5, 1.2dp] | 541 (552) [7.3, 1.0dp] | 537 (538) [8.7] | | | | | B_2 | ν_8 | 822 [s, 2.5] | 798 (788) [116, 5.0dp] | 824 (878) [146, 2.9dp] | 810 (831) [102] | | | | | | v_9 | 386 [m, -] | 379 (356) [15, .23dp] | 371 (379) [18, .14dp] | 379 (380) [18] | | | | | sum | n of (v obsd | + v calcd) | 213 | 119 | 185 | | | | | empirical scal. factors ^d : v | | factors ^d : v | 1.01222 | .93836 | 0.97457 | | | | | | | δ | 1.06576 | .97969 | 0.99788 | | | | ^aUsing basis set from Table 6. ^bObserved relative infrared and Raman intensities. ^cCalculated infrared and Raman intensities in km/mol and Å⁴/AMU. ^dv₄ was omitted from the calculation of the scaling factors for the deformation modes. Table 11. Scaled (unscaled) vibrational frequencies of free gaseous ClF_4^+ and $ClF_4^+ = 2HF$, calculated at the B3LYP level, compared to those observed for $ClF_4^+SbF_6^-$ | ; | approx mode description | obsd in ClF ₄ +SbF ₆ | free ClF ₄ ⁺ | calculated CIF ₄ ⁺ • 2HF ^b | |-----------------------|--|--|---|--| | ν_1 | vsym ClF ₂ eq | 802 | 778 (769) | 794 (766) [147,50p] | | v_2 | vsym ClF ₂ ax | 574 | 583 (576) | 577 (557)
[7.9, 20p] | | ν ₃ | δ sciss CIF ₂ eq and ax, sym combination | 515 | 506 (475) | 517 (476) [60, 2.3p] | | v_4 | δ sciss ClF ₂ eq and ax, antisym combination | 235 | 150 (141) | 225 (206) ^c [.96, .92p] | | v_5 | τClF ₂ | 475 | 488 (458) | 470 (439) [0, 1.9dp] | | v_6 | vas ClF ₂ ax | 803 | 841 (831) | 831 (802) [481, .47dp] | | v_7 | δrock ClF ₂ eq | 534 | 538 (505) | 538 (496) [1.9, .89dp] | | ν_8 | vas ClF ₂ eq | 822 | 798 (788) | 798 (770) [167, 15dp] | | v ₉ | δsciss CIF ₂ ax out of plane | e 386 | 379 (356) | 399 (367) [39, .08dp] | | v ob | sd <u>+</u> v calcd) | | 213 | 92 | | ing fa | actors: v | | 1.01222 | 1.036575 | | | δ | | 1.06576 | 1.08544 | | | V ₂ V ₃ V ₄ V ₅ V ₆ V ₇ V ₈ V ₉ (v obs | description V ₁ vsym ClF ₂ eq V ₂ vsym ClF ₂ ax V ₃ δsciss ClF ₂ eq and ax, sym combination V ₄ δsciss ClF ₂ eq and ax, antisym combination V ₅ τClF ₂ V ₆ vas ClF ₂ ax V ₇ δrock ClF ₂ eq V ₈ vas ClF ₂ eq v ₉ δsciss ClF ₂ eq v ₉ δsciss ClF ₂ ax out of plane v obsd ± v calcd) ing factors: v | description $CIF_4^+SbF_6^ V_1$ vsym CIF_2 eq 802 V_2 vsym CIF_2 ax 574 V_3 δ sciss CIF_2 eq and ax, sym combination V_4 δ sciss CIF_2 eq and ax, antisym combination V_5 τCIF_2 475 V_6 vas CIF_2 ax 803 V_7 δ rock CIF_2 eq 534 V_8 vas CIF_2 eq 822 V_9 δ sciss CIF_2 ax out of plane 386 V_9 obsd v_9 | V1 vsym ClF2eq 802 $778 (769)$ V2 vsym ClF2ax 574 $583 (576)$ V3 δ sciss ClF2eq and ax, sym combination 515 $506 (475)$ V_4 δ sciss ClF2 eq and ax, antisym combination 235 $150 (141)$ V_5 τ ClF2 475 $488 (458)$ V_6 v as ClF2ax 803 $841 (831)$ V_7 δ rock ClF2eq 534 $538 (505)$ V_8 v as ClF2eq 822 $798 (788)$ V_9 δ sciss ClF2ax out of plane 386 $379 (356)$ V 0 obsd \pm V calcd) 213 V 1 ing factors: V V 1.01222 | ^aEmpirical scaling factors to maximize the fit. ^bThe two Cl-F contacts between ClF₄⁺ and 2HF were constrained to 2.42Å, the observed Cl-F bridge distance in ClF₄⁺SbF₆⁻. ^cThis mode couples with the symmetric ClF₂ bridge stretching mode as a symmetric and an antisymmetric combination of the corresponding symmetry coordinates. The listed frequency of 206 cm⁻¹ is the average of the calculated values of 185 and 227 cm⁻¹ (see Table 12). Table 12. Calculated unscaled fluorine bridge modes in ClF₄⁺ → 2HF^a | | | approximate mode description in symmetry C_{2v} | B3LYP
freq [IR, Ra int] | |----------------|------------------|--|------------------------------------| | A ₁ | ν ₁ ΄ | antisymmetric and
symmetric combinations
of the symmetric ClF _{2BR}
stretch and the ClF ₄ ⁺
Berry mode v ₄ | { 227 [0.96, .92p] 185 [1.0, 2.5p] | | | ν ₂ , | δsciss CIF _{2BR} | 62 [3.2, .48p] | | A_2 | v ₃ ' | δpucker | 55 [0, 1.2dp] | | | | | | | B ₁ | ν ₄ ' | δrock ClF _{2BR} | 71 [49, 1.6dp] | | B ₂ | ν ₅ ' | vas ClF _{2BR} | 178 [11, .97dp] | | | v_6 ' | δas ClF _{2BR} in plane | 132 [0.2, .02dp] | ^aIn addition to these 6 modes, the following 6 modes were identified which involve hydrogen displacements: 3951, vH-F, in phase; 3947, vH-F, out of phase; 308, δwag H, in phase; 301, δwag H, out of phase; -83, δrock H, out of phase; -38, δrock H, in phase. Table 13. Observed and scaled^a (unscaled) calculated vibrational frequencies (cm⁻¹) of SeF₄ and TeF₄ | | | CCSD(T) | 680(102)[57] | 570(589)[0.07] | 297(291)[40] | 125(122)[0.9] | 312(305)[0] | 607(627)[268] | 328(321)[20] | 678(700)[101] | 199(195)[15] | 49
0.96831
1.02213 | |------------------------|--------|---------|-------------------------------|-----------------------|-------------------|---------------------|-------------------|---------------------|--------------------|---------------------|--------------------|--| | | calcd | MP2 | 681(704)[59] | 570(590)[0] | 297(291)[39] | 125(122)[0.9] | 313(307)[0] | 607(628)[275] | 329(322)[19] | 677(700)[104] | 199(195)[15] | 48
0.9668
1.02055 | | TeF4 | | B3LYP | 680(674)[56,16p] | 572(567)[.02,12p] | 294(271)[33,.96p] | 107(99)[1.1,.38wp] | 323(298)[0,1.3dp] | 606(600)[257,1.8dp] | 332(306)[15,.84dp] | 676(670)[104,5.9dp] | 222(205)[14,0] | 41
1.00947
1.08471 | | | psqo | | 969 | 572 | 293 | | | 588 | 333 | 682 | | | | | | CCSD(T) | 736(754)[59] | 580(595)[.75] | 372(369)[31] | 167(165)[1.4] | 372(367)[0] | 637(653)[381] | 400(405)[16] | 730(748)[114] | 249(246)[15] | 43
0.97557
1.01176 | | | calcd | MP2 | 740(761)[63,15p] | 579(596)[.94,14p] | 370(366)[30,1.1p] | 168(166)[1.4,.50p] | 373(369)[0,1.4dp] | 636(654)[392,.92dp] | 407(402)[15,.95dp] | 729(750)122,5.0dp] | 247(244)[14,.02dp] | 36
0.97188
1.01176 | | SeF ₄ | Ö | B3LYP | 743(723)[60,16p] ^c | 581(565)[1.7,14p] | 369(339)[25,1.2p] | 169(155)[1.6,.58wp] | 372(342)[0,1.6dp] | 635(618)[378,.73dp] | 407(374)[10,1.0dp] | 724(705)[117,5.6dp] | 248(228)[14,.02dp] | 39
1.02765
1.08754 | | | - psqO | | 744 | 574 | 367 | 162 | 374 | 634 | 409 | 733 | 256 | V calcd) | | Vibration ^b | | | V 1 | V ₂ | ٧3 | ٧4 | Vs | V 6 | V ₇ | 8 | 6/ | ΣΔ(V obsd±V calcd)
Empirical scaling V
Factors δ | | Vib | | | A_1 | | | | A_2 | \mathbf{B}_1 | | \mathbf{B}_2 | | ΣΔ(V ol
Empiric
Factors | ^aEmpirical scaling factors. ^bThe approximate mode description is identical to that given in Table 9. ^cInfrared and Raman intensities in km/mol and Å⁴ / AMU, respectively. Table 14. Observed and scaled^a (unscaled) calculated vibrational frequencies (cm⁻¹) of BrF₄⁺ and IF₄⁺ | Vibration ^b | المالة | BrF4 ⁺ | | | | F4 | | |--|--------------------|-------------------------|--------------------------|--------------------------|-------------------|------------------|-------------| | | Obsd | | calcd | | | calcd | | | | | B3LYP | MP2 | CCSD(T) | B3LYP | MP2 | CCSD(T) | | A_1 V_1 | 723 | 718(721)[23,21p] | 729(783)[31,13p] | 708(738)[21] | (716)[25,20p] | (757)[30,17p] | (740[24] | | V 2 | 909 | 622(625)[2,18p] | 612(658)[1.5,14p] | 623(650)[.94] | (650)[.02,16p] | (673)[.0007,16p] | [667][.005] | | V ₃ | 369 | 366(351)[21,1.5p] | 368(385)[25,1.1p] | 368(377)[25] | (295)[28,1.1p] | (311)[32,.97p] | (313)[33] | | ٧4 | | 137(131)[.71,.97wp] | 141(147)[.7,8p] | 139(143)[.62] | (97)[0.6,.58wp] | (119)[.56, .52p] | (134)[.61] | | A ₂ V ₅ | 385 | 388(372)[0,2.5dp] | 386(403)[0,2.3dp] | 386(396)[0] | (332)[0,2.1dp] | (339)[0,1.9dp] | (336)[0] | | $B_1 v_6$ | 736 | 730(733)[253,.16dp] | 716(769)[272,.3dp] | 731(762)[242] | (709)[179,1.1dp] | (734)[202,.9dp] | (732)[186] | | V7 | | 414(397)[12,1.4dp] | 411(430)[16,1.3dp] | 410(420)[16] | (333)[15,1.1dp] | (351)[19,1.2dp] | (353)[19] | | $B_2 \otimes v_8$ | 736 | 729(732)[68,5.6dp] | 743(798)[86,3.4dp] | 737(768)[59] | (734)[68,5.7dp] | (773)[71,4.9dp] | (758)[57] | | V ₉ | | 272(261)[13,.06dp] | 262(274)[14,.04dp] | 269(276)[14] | (237)[13,.0007dp] | (220)[14,.009dp] | (215)[14] | | ΣΔ(V obsd ± V calcd) Empirical scaling V Factors δ | t V calcd) aling V | 40
.99548
1.04311 | 41
0.93128
0.95689 | 40
0.95905
0.97550 | | | | ^aEmpirical scaling factors. ^bThe approximate mode description is identical to that given in Table 9. Table 15. Correlation diagram for SbF_6^- ($O_h \rightarrow C_{2v}$) and unscaled frequencies, infrared and Raman intensities, and polarization of Raman bands calculated at the B3LYP level | $\mathbf{O_h}$ | | | $\mathrm{C}_{2\mathrm{v}}$ | |------------------------------|---|--|---| | 609[0,24p] A _{1g} | | A ₁ | 612 [18, 19p] | | | | | | | 647[647,0] F _{1u} | - | A ₁
B ₁
B ₂ | 635 [163, 2.7p]
674 [182, .0001 dp]
633[181, .04dp] | | 294[63, 0] F _{1u} | • | A ₁
B ₁
B ₂ | 286 [64, 0014p]
287 [63, .0015 dp]
286[64, 0] | | 268[0,1.5dp] F _{2g} | | Δ. | 256 [04 1 5dp] | | 174[0, 0] F _{2u} | | A ₁ A ₂ B ₂ | 166 [.09, 0]
171 [0, 0]
166[.09, 0] | Table 16. Scaled CCSD(T) force constants and potential energy distribution of SF₄ | | ca
cn | lcd fre | q,ª | symm | etry forc | e constant | ts ^b | potential energy ^c distribution (%) | |-------|----------------|---------|-----------------|-----------------|-----------------|-----------------|-----------------|--| | | CII | 1 | | F ₁₁ | F ₂₂ | F ₃₃ | F ₄₄ | distribution (%) | | A_1 | ν_1 | 881 | F ₁₁ | 5.40 | | | | 60(1), 4(2), 15(3), 21(4) | | | v_2 | 561 | F ₂₂ | .78 | 3.81 | | | 90(2), 10(1) | | | ν_3 | 538 | F ₃₃ | .19 | 01 | 1.22 | | 55(4), 41(3), 3(1) | | | ν_4 | 226 | F ₄₄ | .45 | 10 | .60 | 1.49 | 59(3), 41(4) | | A_2 | v_5 | 470 | F ₅₅ | 1.97 | | | | 100(5) | | B_1 | ν_6 | 740 | F ₆₆ | F ₆₆ | F ₇₇ | | | | | | | | | 2.99 | | | | 74(6), 26(7) | | | ν ₇ | 538 | F ₇₇ | 0.74 | 2.19 | | | 96(7), 4(6) | | B_2 | ν_8 | 862 | F ₈₈ | F ₈₈ | F99 | | | | | | | | | 5.01 | | | | 89(8), 11(9) | | | V 9 | 356 | F ₉₉ | .56 | 1.98 | | | 100(9) | ^aFrequencies from Table 9. ^bStretching force constants in mdyn/Å, deformation constants in mdyn Å/rad², and stretch-bend interaction constants in mdyn/rad. Scaling factors: stretching force constants, (.97866)²; deformation constants, (1.01008)²; stretch-bend interactions, .97866 x 1.01008. ^cThe following symmetry coordinates were used: S1 = vsym eq; S2 = vsym ax; S3 = δ sym eg; S4 = δ sym ax; S5 = τ ; S6 = vas ax; S7 = δ rock eq; S8 = vas eq; S9 = δ sciss ax out of plane. Table 17. Scaled CCSD(T) force constants and potential energy distribution of SeF₄ | | cal
cm | cd freq | a
, | symmetr | ry force c | onstants ^b | | potential energy ^c distribution (%) | |----------------
----------------|---------|-----------------|-----------------|-------------------|-----------------------|-----------------|--| | | CIII | | | F_{11} | F_{22} | F ₃₃ | F ₄₄ | distribution (%) | | A_1 | ν_1 | 736 | F ₁₁ | 4.89 | | | | 84(1), 7(2), 4(3), 5(4) | | | ν_2 | 580 | F ₂₂ | 0.39 | 3.89 | | | 91(2), 9(1) | | | ν_3 | 372 | F ₃₃ | .02 | 02 | .95 | | 52(4), 47(3), 1(2) | | | V_4 | 167 | F ₄₄ | .22 | 22 | .49 | 1.01 | 52(3), 48(4) | | A_2 | ν_5 | 372 | F ₅₅ | 1.46 | | | | 100(5) | | \mathbf{B}_1 | ν_6 | 637 | F ₆₆ | F ₆₆ | \mathbf{F}_{77} | | | | | | | | | 3.17 | | | | 94(6), 6(7) | | | ν ₇ | 400 | F ₇₇ | 0.36 | 1.63 | | | 100(7), 4(6) | | B_2 | ν_8 | 730 | F_{88} | F ₈₈ | F ₉₉ | | | | | | | | | 4.69 | | | | 98(8), 2(9) | | | V 9 | 249 | F ₉₉ | .25 | 1.39 | | | 100(9) | ^aFrequencies from Table 13. ^{b,c}Force constant dimensions and symmetry coordinates are identical to those given in the footnotes of Table 16. Scaling factors – stretching force constants, (.97557)²; deformation constants, (1.01281)²: stretch-bend interaction, .97557 x 1.01281. Table 18. Scaled CCSD(T) force constants and potential energy distribution of TeF₄ | | ca
cn | lcd free | q,ª | symmet | ry force | constants ^b | | potential energy ^c distribution (%) | |-------|------------|----------|-----------------|-------------------|-------------------|------------------------|-----------------|--| | | CII | 1 | | \mathbf{F}_{11} | F ₂₂ | F ₃₃ | F ₄₄ | distribution (%) | | A_1 | ν_1 | 680 | F ₁₁ | 4.52 | | | | 90(1), 7(2), 2(3), 2(4) | | | v_2 | 570 | F_{22} | 0.23 | 3.69 | | | 93(2), 7(1) | | | v_3 | 297 | F ₃₃ | 076 | 039 | .76 | | 53(4), 47(3) | | | ν_4 | 125 | F ₄₄ | .17 | 19 | .48 | .84 | 52(3), 46(4) | | A_2 | v_5 | 312 | F ₅₅ | 1.22 | | | | 100(5) | | | | | | F ₆₆ | \mathbf{F}_{77} | | | | | B_1 | ν_6 | 607 | F_{66} | 3.25 | | | | 98(6), 2(7) | | | v_7 | 328 | F ₇₇ | 0.20 | 1.37 | | | 100(7) | | | | | | F ₈₈ | F_{99} | | | | | B_2 | ν_8 | 678 | F_{88} | 4.40 | | | | 99(8), 1(9) | | | V 9 | 199 | F99 | .15 | 1.12 | • | | 100(9) | ^aFrequencies from Table 13. ^{b,c}Force constant dimensions and symmetry coordinates are identical to those given in the footnotes of Table 16. Scaling factors – stretching force constants, (.96831)²; deformation constants, (1.02213)²: stretch-bend interaction, .96831 x 1.02213. Table 19. Scaled CCSD(T) force constants and potential energy distribution of ClF₄⁺ | | cal
cm | cd freq | , a | symmet | ry force co | onstants ^b | | potential energy ^c distribution (%) | |-------|---------------|---------|-----------------|-----------------|-------------------|-----------------------|-----------------|--| | | CIII | | | F_{11} | F ₂₂ | F ₃₃ | F ₄₄ | distribution (%) | | A_1 | $\nu_{\rm I}$ | 774 | F ₁₁ | 4.46 | | | | 58(1), 5(2), 16(3), 21(4) | | | ν_2 | 583 | F ₂₂ | .47 | 3.97 | | | 87(2), 11(1), 1(3), 1(4) | | | ν_3 | 508 | F ₃₃ | .020 | -0.027 | .73 | | 62(4), 34(3), 4(1) | | | ν_4 | 159 | F ₄₄ | .46 | 018 | .60 | 1.35 | 69(3), 30(4) | | A_2 | v_5 | 488 | F ₅₅ | 2.01 | | | | 100(5) | | | | | | F ₆₆ | F ₇₇ | | | | | B_1 | ν_6 | 833 | F ₆₆ | 3.89 | | | | 77(6), 23(7) | | | v_7 | 537 | F ₇₇ | 0.69 | 2.21 | ÷ | | 98(7), 2(6) | | | | | | F_{88} | \mathbf{F}_{99} | | | | | B_2 | ν_8 | 810 | F_{88} | 4.53 | | | | 89(8), 11(9) | | | V9 | 379 | F99 | .69 | 2.03 | | | 100(9) | ^aFrequencies from Table 10. ^{b,c}Force constant dimensions and symmetry coordinates are identical to those given in the footnotes of Table 16. Scaling factors – stretching force constants, (.97457)²; deformation constants, (.99788)²: stretch-bend interaction, .97457 x 0.99788. Table 20. Scaled CCSD(T) force constants and potential energy distribution of ${\rm BrF_4}^+$ | | ca | lcd free | q,ª | symmet | ry force | constants ^b | | potential energy ^c distribution (%) | |-------|-----------------------|----------|-----------------|-----------------|----------|------------------------|-----------------|--| | | CII | 1 | | F_{11} | F_{22} | F ₃₃ | F ₄₄ | distribution (78) | | A_1 | ν_1 | 708 | F ₁₁ | 4.68 | | | | 84(1), 7(2), 4(3), 5(4) | | | ν_2 | 623 | F ₂₂ | .15 | 4.40 | | | 91(2), 9(1) | | | v_3 | 368 | F ₃₃ | 009 | .012 | .70 | | 60(4), 40(3) | | | ν_4 | 139 | F ₄₄ | .27 | 11 | .49 | .98 | 62(3), 38(4) | | A_2 | v_5 | 386 | F ₅₅ | 1.48 | | | | 100(5) | | | | | | F ₆₆ | F_{77} | | | | | B_1 | v_6 | 731 | F ₆₆ | 4.12 | | | | 93(6), 7(7) | | | v ₇ | 410 | F ₇₇ | .35 | 1.65 | | | 100(7) | | | | | • | F ₈₈ | F99 | | | | | B_2 | ν_8 | 737 | F ₈₈ | 4.74 | | | | 97(8), 3(9) | | | V 9 | 269 | F ₉₉ | .36 | 1.44 | | | 100(8) | ^aFrequencies from Table 14. ^{b,c}Force constant dimensions and symmetry coordinates are identical to those given in the footnotes of Table 16. Scaling factors – stretching force constants, (.95905)²; deformation constants, (.97550)²: stretch-bend interaction, .95905 x .97550. Table 21. Scaled CCSD(T) force constants and potential energy distribution of IF₄⁺ | | ca. | lcd free | q,ª | symme | try force o | constants ^b | | potential energy ^c distribution (%) | |-------|----------------|----------|-----------------|-----------------|-----------------|------------------------|-----------------|--| | | CII | 1 | | F ₁₁ | F ₂₂ | F ₃₃ | F ₄₄ | distribution (70) | | A_1 | ν_1 | 710 | F_{11} | 5.01 | | | | 92(1), 5(2), 1(3), 2(4) | | | ν_2 | 640 | F ₂₂ | .056 | 4.59 | | | 95(2), 5(1) | | | v_3 | 307 | F ₃₃ | .011 | .046 | .73 | | 57(4), 43(3) | | | ν_4 | 131 | F ₄₄ | .23 | 088 | .46 | .87 | 43(4), 57(3) | | A_2 | ν_5 | 329 | F ₅₅ | 1.30 | | | | 100(5) | | | | | | F ₆₆ | F ₇₇ | | | | | B_1 | ν_6 | 703 | F_{66} | 4.32 | | | | 98(6), 2(7) | | | ν ₇ | 345 | F ₇₇ | .23 | 1.37 | | | 100(7) | | | | | | F_{88} | F ₉₉ | | | | | B_2 | ν_8 | 728 | F ₈₈ | 5.07 | | | | 99(8), 1(9) | | | ν ₉ | 211 | F ₉₉ | .24 | 1.19 | | | 100(9) | ^aEmpirical scaling factors of .96 and .98 were used for the stretching and deformation modes respectively. ^{b,c}Force constant dimensions and symmetry coordinates are identical to those given in the footnotes of Table 16. Scaling factors – stretching force constants, $(.96)^2$; deformation constants, $(.98)^2$: stretch-bend interaction, .96 x .98. Table 22. Stretching force constants (mdyn / Å) of ClF_4^+ and SF_4 compared to those of PF_4^- , SeF_4 , TeF_4 , BrF_4^+ and IF_4^+ | | PF ₄ - | SF ₄ | SeF ₄ | TeF ₄ | ClF ₄ ⁺ | BrF_4^+ | IF ₄ ⁺ | |--------|-------------------|-----------------|------------------|------------------|-------------------------------|-----------|------------------------------| | fr, eq | 3.94 | 5.21 | 4.79 | 4.46 | 4.50 | 4.77 | 5.04 | | frr | .26 | .20 | .10 | .06 | 035 | 03 | 03 | | fR, ax | 1.82 | 3.40 | 3.53 | 3.47 | 3.93 | 4.26 | 4.46 | | fRR | .34 | .41 | .36 | .22 | .04 | .14 | .14 | | fR/fr | .46 | .65 | .74 | .78 | .87 | .89 | .88 | | | 1 | 1 | | | 1 | | | Figure 1. Ortep Plot of ${\rm ClF_4}^+{\rm SbF_6}^-$; thermal ellipsoids are shown at the 50% probability level. Figure 2. Packing diagram for ClF₄⁺SbF₆⁻. Figure 3. Interionic fluorine bridging in ClF_4 *SbF₆, showing the pseudo-octahedral fluorine environment around chlorine. Figure 4. Observed (a) and calculated (b) structures of $C_{2\nu}$ distorted SbF₆. Figure 5. Stretching force constants of the axial and equatorial bonds in the isoelectronic SF₄, SeF₄, TeF₄ (solid lines) and ClF₄⁺, BrF₄⁺, IF₄⁺ (broken lines) series.